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Letters
Palladium mediated stereospecific synthesis of 3-enynyl substituted
thioflavones/flavonesq
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Abstract—The stereocontrolled synthesis of enynes has been accomplished via a sequential Heck–Sonogashira reaction in a simple
synthetic operation. A variety of terminal alkynes were reacted with 3-iodo(thio)flavone in the presence of a palladium catalyst and a
copper salt affording a mild and one-pot method for the first synthesis of the corresponding 3-enynyl and/or alkynyl derivatives. The
mechanism and scope of the reaction are discussed.
� 2004 Elsevier Ltd. All rights reserved.
Interest in 3-substituted (thio)flavones has been consid-
erable because of their occurrence in nature1 and their
biological activities.2;3 On the other hand, enynes are
found to be integral parts of highly potent antitumor,4

as well as strong antifungal, agents.5 In connection with
our studies on the development of various heterocyclic
structures6–8 we became interested in the synthesis9a of
3-alkenyl/alkynyl-substituted (thio)flavones.9b Despite
their biological significance, only a few methods
(including Suzuki coupling of 3-haloflavones)2c have
been reported for the synthesis of 3-substituted
(thio)flavones10 whereas a number of methods are
available for the synthesis of enynes11 including transi-
tion metal catalyzed reactions. Synthesis of 3-enynyl/
alkynyl substituted thioflavones, however, has not been
reported in the literature. Over the last 25 years, palla-
dium catalyzed alkenylation (the Heck reaction)12a and
alkynylation (the Sonogashira coupling)12b have become
attractive and powerful tools for C–C bond forming
reactions.12c We have a long-term interest in palladium
catalyzed reactions13 and now wish to report a new
synthesis of 3-enynyl (thio)flavones (along with their
3-alkynyl analogues) via palladium catalyzed reaction
cascades where several C–C bonds are formed in a single
synthetic operation.12c
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During the course of our studies on the palladium cata-
lyzed reaction of a variety of heteroaryl halides9a;14a with
terminal alkynes, we noted that in addition to the ex-
pected product, an unusual product14b was formed
depending on the delayed use of copper salts in certain
cases, especially when 3-iodothioflavone was used as the
heteroaryl halide. The spectral data identified it as an
enyne possessing the thioflavone moiety attached to the
vinylic group.14c The unexpected formation of this
product prompted us to investigate this reaction in a
more systematic way. Thus, when 3-iodo(thio)flavone
(I, X¼O, S)15a was treated with 2 equiv of a terminal
alkyne (II, R¼ alkyl, hydroxyalkyl, etc.)15b in dimethyl-
formamide (DMF) in the presence of PdCl2(PPh3)2
(0.04 equiv), CuI (0.05 equiv), and triethylamine
(8 equiv) under a nitrogen atmosphere, 3-alkynyl
(thio)flavone (III, method A, Scheme 1) was obtained as
the only product in good to excellent yield (the Sono-
gashira reaction). However, 3-enynyl substituted ana-
logues (IV) were isolated as the major products in most
cases when the same reaction was performed with
1.5 equiv of alkyne at 25–30 �C in the absence of CuI,
initially for 2–3 h (under Heck reaction conditions),
followed by the subsequent addition of CuI (0.05 equiv)
along with one further equivalent of alkyne (method B,
Scheme 1).15c The results of this preliminary study are
summarized in Table 1.

While the yields are not optimized, the enynylation of
(thio)flavones (I) in a single synthetic operation afforded
the desired products (IV) in satisfactory yields. By using
this palladium catalyzed reaction a wide variety of
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Table 1. Synthesis of 3-enynyl substituted flavones/thioflavones via the sequential Heck–Sonogashira strategy (method B)a

Entry (Thio)flavones (I) Alkynes (II) R¼ Productsb (IV) Yield (%)c IV
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S
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Scheme 1. Palladium catalyzed coupling of 3-iodoflavone/thioflavones with terminal alkynes.
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Table 1 (continued)

Entry (Thio)flavones (I) Alkynes (II) R¼ Productsb (IV) Yield (%)c IV

8
O

O
I

OCH3

OCH3
Ib

CH(OH)CH2CH3

O

O

OH

OH

OCH3

OCH3 IVh

10d

aAll reactions were carried out using I (1.0 equiv), II (1.5+ 1.0 equiv), PdCl2(PPh3)2 (0.04 equiv), CuI (0.05 equiv), Et3N (8 equiv) in DMF.
b Identified by 1H NMR, 13C NMR, IR, and mass spectroscopy.
c Isolated yields.
d IIIh was isolated in 56% yield.
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Scheme 2. Probable mechanism for the tandem Heck–Sonogashira coupling reaction.
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terminal acetylenes were reacted with 3-iodothioflavone
(Ia, Table 1). The use of 3-iodoflavone (Ib), however, led
to the formation of the 3-alkynyl analogue as the major
product rather than 3-enynyl derivative (entry 8, Table
1). The reaction was generally carried out at 25 �C in
both cases (methods A and B), however, initial heating
(80 �C) of the mixture of iodo compound, palladium
catalyst, and triethylamine in DMF was required
(1 h) for the initiation of Heck–Sonogashira coupling
(method B).

Both the coupling reactions (methods A and B, Scheme
1) were usually carried out using (PPh3)2PdCl2 as the
palladium catalyst and CuI as a co-catalyst. Triethyl-
amine was used as the base in both cases, the omission
of which resulted in no reaction as well as recovery of
the starting material I. Method A afforded normal
coupling products (III) in good yields. The use of CuI
was found to be critical in the tandem Heck–Sono-
gashira coupling reaction (method B) as the course of
the reaction along with the nature of the product were
changed depending on the subsequent addition (2 h after
the addition of 1.5 equiv of II) of CuI to the reaction
mixture. As indicated by the nature of products (III or
IV) isolated in both cases, it is evident that the reaction
followed the Sonogashira pathway in the first case and
the Heck–Sonogashira sequence in the second case.
Nevertheless, the isolation of 3-alkynyl thioflavone III
(Sonogashira product) as a minor product (10–20%
yield) in the second case indicated that the Sonogashira
coupling was often a side reaction during the formation
of the 3-enynyl thioflavone. Interestingly, the palladium
mediated coupling of 3-iodoflavone with internal alky-
nes (due to the participation of the neighboring aryl
group in reaction cascades) resulted in the formation of
annulated products.16 The Heck–Sonogashira reaction
was found to be highly stereospecific as only a single
isomer of IV was isolated from the reaction mixture.17

While the precise mechanism of the palladium mediated
tandem reaction leading to the formation of enynyl
derivative IV is not clear at this stage, presumably, the
reaction proceeds via syn addition of the arylpalladium
complex [generated by the interaction of the
3-iodo(thio)flavone and the active Pd(0) species]18a to
the triple bond of the reactant alkyne, which yields the
reactive alkenyl palladium species (A) (Scheme 2).18b

Due to the required stability imparted by the adjacent
carbonyl oxygen of the flavone moiety18c this long-lived
species (A) then undergoes further reaction with the
terminal alkyne to give the enynyl derivative IV. It is
well known that CuI activates terminal alkynes by
generating copper acetylides in situ. Therefore CuI
facilitates the Sonogashira reaction in method A as well
as the reaction of terminal alkynes with palladium spe-
cies A in method B. Further study is in progress to
evaluate the specific role of CuI especially in method B.
Nonetheless, perhaps it is the reactivity of the copper
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acetylide, which does not allow the palladium complex
A to undergo intramolecular interaction involving the
neighboring aryl group leading to the formation of the
annulated product or ring opening of the pyrone
ring.16;18d

In summary, we have described a facile and mild pro-
cedure for the stereospecific synthesis of novel 3-enynyl
(thio)flavones via a Heck–Sonogashira strategy. To the
best of our knowledge this is the first example of the
one-pot synthesis of enyne derivatives having a hetero-
aryl moiety attached to the vinylic group. Since, metal
mediated cascade reactions are known to be useful tools
for the short synthesis of complex organic molecules, the
methodology described holds promise for modern
organic synthesis.
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